Numerical Solution of Weakly Regular Volterra Integral Equations of the 1st Kind I. Muftahov

Irkutsk State Technical University, Russia e-mail: ildar_sm@mail.ru

We propose new numerical method for solution of the following linear scalar Volterra integral equation of the 1st kind

$$\int_{0}^{t} K(t,s)x(s)ds = f(t), \ 0 \le s \le t \le T, \ f(0) = 0,$$

where kernel is defined as follows

$$K(t,s) := \begin{cases} K_1(t,s), \ t,s \in m_1, \\ \dots \\ K_n(t,s), \ t,s \in m_n, \end{cases} \quad m_i := \{t,s \mid \alpha_{i-1}(t) < s < \alpha_i(t)\}, \\ \alpha_0(t) = 0, \ \alpha_n(t) = t, \ i = \overline{1,n}, \end{cases}$$

 $\alpha_i(t), f(t) \in \mathcal{C}^1_{[0,T]}, K_i(t,s)$ have continuous derivatives (w.r.t. t) for $t, s \in \overline{m_i}, K_n(t,t) \neq 0$, $\alpha_i(0) = 0, \quad 0 < \alpha_1(t) < \alpha_2(t) < \cdots < \alpha_{n-1}(t) < t, \alpha_1(t), \dots, \alpha_{n-1}(t)$ increase at least in the small neighborhood $0 \leq t \leq \tau, 0 < \alpha'_1(0) \leq \cdots \leq \alpha'_{n-1}(0) < 1$. The mid-rectangular quadrature rule is employed for the numerical method construction. The accuracy of proposed numerical method is $\mathcal{O}(1/N)$. We introduce the following uniform mesh $\Omega^N_x := \{t_i | t_i = i/N, i = 0, \dots, N\}$, the mesh can be non-uniform $0 = t_0 < t_1 < t_2 < \dots < t_N = T$, $h = \max_{i=\overline{1,N}}(t_i - 1)$

 $t_{i-1} = \mathcal{O}(N^{-1})$ and seek the approximate solution $x_N(t) = \sum_{i=1}^N x_i \delta_i(t), t \in (0,T], \delta_i(t) =$

 $\begin{cases} 1, & \text{for } t \in \Delta_i = (t_{i-1}, t_i] \\ 0, & \text{for } t \notin \Delta_i \end{cases}$, where the coefficients $x_i, i = \overline{1, N}$ are under determination. Let

us consider the equation $\int_{0}^{t/3} (1 + t - s)x(s) ds - \int_{t/3}^{t} x(s) ds = \frac{t^4}{108} - \frac{25t^3}{81}, t \in [0, 2]$, where $\bar{x}(t) = t^2$ is exact solution. Table below demonstrates the errors $\varepsilon_N = ||x^N(t_i) - \bar{x}(t_i)||_{\Omega^N}$ and order of convergence $p^N = \log_2 \frac{D^N}{D^{2N}}$ based on maximum pointwise two-mesh differences $D^N = ||x^N(t_i) - \bar{x}^{2N}(t_i)||_{\Omega^N}$ without a priori knowledge of exact solition.

	32	64	128	256	512	1024	2048	4096
ε_N	0.13034	0.07804	0.03989	0.01975	0.01002	0.00508	0.00256	0.00128
D^N	0.07462	0.03815	0.02013	0.00975	0.00514	0.00259	0.00129	0.00065
p^N	0.96774	0.92207	1.04619	0.92217	0.98864	1.00716	0.98639	1.00198

This is joint work with Denis Sidorov and Alexander Tynda.

REFERENCES

 D. Sidorov, A. Tynda and I. Muftahov Numerical Solution of Weakly Regular Volterra Integral Equations of the First Kind. — arXiv:1403.3764v2.
D. N. Sidorov Methods of Analysis of Integral Dynamical Systems: Theory and Applications. — ISU Publ, 2013, p. 293.