APPROACHES TO SOLUTION UNIVERSITY TIMETABLING

A. Dudchenko ${ }^{1,2}$, A. Lazarev ${ }^{1,2,3,4}$
${ }^{1}$ Institute of Control Sciences of the Russian Academy of Sciences, Moscow
${ }^{2}$ Moscow institute of physics and technology (state university), Moscow
${ }^{3}$ Lomonosov Moscow State University, Moscow
${ }^{4}$ National Research University - Higher School of Economics, Moscow
e-mail: aleksandra.dudchenko@gmail.com
We consider two problems of university timetabling. The first problem is timetabling in non-Russian universities where individual study programs of students are taken into account(Course Timetabling). The second problem is timetabling in Russian universities where students are considered in groups. It is an expanded combination of problems School Timetabling when availability of the rooms isn't considered, all groups are engaged in own audiences and don't change them and Course Timetabling when availability of rooms is considered and in a room can be different groups. The university timetabling is NP-Complete [1].

We consider 4 approaches to solve the problems:

- harmony search [1];
- non-linear great deluge [2];
- honey-bee mating optimization [3];
- branch-and-cut [4].

Result of comparison are presented with a conclusion of their applicability in university timetabling software.

REFERENCES

1. M.A. Al-Betar, A.T. Khader A harmony search algorithm for university course timetabling. // Annals of Operations Research, 2012, Volume 194, Issue 1, pp 3-31.
2. J.H. Obit, D. Ouelhadj, D. Landa-Silva, R, Alfred An Evolutionary Non-Linear Great Deluge Approach for Solving Course Timetabling Problems. // International Journal of Computer Science Issues (IJCSI), July 2012, Volume 9, Issue 4, p1
3. N.R. Sabar, M. Ayob, G. Kendall, R. Qu A Honey-bee Mating Optimization Algorithm for Educational Timetabling Problems. // European Journal of Operational Research, 2012, Volume 216, Issue 3, pp 533-543.
4. E.K. Burke, J. Marecek, A.J. Parkes, H. Rudova A Branch-and-cut Procedure for the Udine Course Timetabling Problem // Annals of Operations Research, April 2012, Volume 194, Issue 1 , pp 71-87
