THE OPTIMAL SEGMENTATION OF GRAPH

V.V. Bykova

Siberian Federal University, Krasnoyarsk
email: bykvalen@mail.ru

We investigate the following problem which is associated with segmentation graph.
SEGMENTATION GRAPH PROBLEM (or briefly SGP)
Instance: A connected graph $G=(V, E),|V| \geq 2,|E| \geq 1$; a non-negative integer $K \leq|V|$; a positive integer $L \leq|E|$.

Question: Is there a set $B \subseteq V$ of cardinality K, which segmentation graph $G=(V, E)$ on the set B generates a set of segments $\mathfrak{R}=\left\{G_{1}, G_{2}, \ldots, G_{p}\right\}$ and $w(G)=\max \left\{\left|E_{i}\right|: 1 \leq i \leq p\right\}$ is the maximum (by number of edges) size of segment $G_{i}=\left(V_{i}, E_{i}\right) \in \mathfrak{R}$?

Under segmentation graph $G=(V, E)$ on the set $B \subseteq V$ we understand a partition of the set of edges of G, that two edges belong to the same segment of G_{i}, if and only if in the graph G_{i} exists (a, b)-path, that includes both of these edges and no contains vertices belonging to the B, except possibly vertices a and b. The set of vertices V_{i} of segment $G_{i}=\left(V_{i}, E_{i}\right)$ comprises end vertices of edges belonging to E_{i}.

Similar formulations of the SGP studied previously in [1, 2] for the design of trunk pipeline networks. It is known that such problems are NP-hard.

In this paper, we continued to study the SGP. We offer operation segmentation graph $G=(V, E)$ on the set $B \subseteq V$, which indicates constructively as produce different segmentation. We showed that a set of segments $\mathfrak{R}=\left\{G_{1}, G_{2}, \ldots, G_{p}\right\}$ connected graph $G=(V, E)$, where $|V| \geq 2,|E| \geq 1$, uniquely determined by $B \subseteq V$. For a fixed B the set \mathfrak{R} can be constructed in time $O(|V|+|E|)$. We have proved the properties of segments that show design features of admissible and optimal solution. Presented results can be used to develop algorithms for solving SGP.

REFERENCES

1. H.L. Bodlaender, A. Hendriks, A. Grigoriev, N.V. Grigorieva The valve location problem in simple network topologies. - INFORMS Journal on Computing. 2010, 22(3), pp. 433-442.
2. G. Laporte, M. Pascoal The pipeline and valve location problem. - European Journal of Industrial Engineering. 2012, 6(3), pp. 301-321.
