THE SOLVER MODULE FOR LINEAR STOCHASTIC PROBLEMS ${ }^{1}$

D.K. Atink, O.N. Kaneva, D.V. Kovalev

Omsk state technical University, Omsk
e-mail: dmitryatink@gmail.com, okaneva@yandex.ru, mrhankey2008@gmail.com

The work is devoted to creation of software for the solution of linear stochastic problem of the type:

$$
\begin{array}{r}
M\left(\sum_{j=1}^{n} c_{j} x_{j}\right) \rightarrow \max , \\
P\left\{\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}\right\} \geq \alpha_{i}, i=1, \ldots, m \tag{1}\\
x_{j} \geq 0, j=1, \ldots, n
\end{array}
$$

There are implemented two approaches for resolve problem (1).
The first approach - move to deterministic task.
It is known [1], if the elements of the matrix A and components of the vector b are mutually independent normally distributed random variable $a_{i j} \in N\left(\bar{a}_{i j}, \sigma_{i j}^{2}\right), b_{i} \in N\left(\bar{b}_{i}, \theta_{i}^{2}\right)$ and the condition $\alpha_{i} \geq 0.5, i=1, \ldots, m$, then the problem (1) is reduced to deterministic problem of convex programming in the following form:

$$
\begin{array}{r}
\sum_{j=1}^{n} \bar{c}_{j} x_{j} \rightarrow \max , \\
\Phi^{-1}\left(\alpha_{i}\right)\left\{\sum_{j=1}^{n} \sigma_{i j}^{2} x_{j}^{2}+\theta_{i}^{2}\right\}^{\frac{1}{2}}+\sum_{j=1}^{n} \bar{a}_{i j} x_{j} \leq \bar{b}_{i}, i=1, \ldots, m, \tag{2}\\
x_{j} \geq 0, j=1, \ldots, n
\end{array}
$$

For the solution of problem (2), provided that $x \in X$, where X - convex set, in the software package implements a method possible directions. In addition, there was conducted study based on statistical methods and simulation [2], the result of which are the conditions, in witch possible to use problem (2) to find the solution of problem (1) if the elements of the matrix A and vector b are mutually independent uniformly distributed random variable $a_{i j} \in R\left(\underline{a}_{i j}, \bar{a}_{i j}\right), b_{i} \in$ $R\left(\underline{b}_{i}, \bar{b}_{i}\right)$.

The second approach - a direct method for solving stochastic problems.
In developed software implemented design method of stochastic quasigradient [3] for solving problem (1), provided that $x \in X$, where X - convex set.

REFERENCES

1. D.B. Yudin Matematicheskie metody upravlenija v uslovijah nepolnoj informacii. Zadachi i metody stohasticheskogo programmirovanija. - M.: Krasand, 2010, 400 p.
2.V.N. Zadorozhnyj Imitacionnoe i statisticheskoe modelirovanie. - Omsk : Izd-vo OmGTU, 2013, 136 p.
2. Ju.M. Ermol'ev Metody stohasticheskogo programmirovanija - M.: Nauka, 1976, 240 p.
[^0]
[^0]: ${ }^{1}$ This work is supported by the RFBR (grant № 12-07-00326-a)

