AN APPROXIMATE ALGORITHM FOR SOLVING THE MAXIMUM CLIQUE PROBLEM

A.A. Kuznetsova

School 12 Usolie-Siberian
e-mail: antony"44g@mail.ru
Suppose a simple undirected graph $G(V, E)$ is given. It is required to find a maximum subset of vertices C, every pair of vertices connected by an edge in $G[1]$. This problem can be represented as a continuous one:

$$
\left(P_{\gamma}\right)\left\{\begin{array}{l}
<x, A_{\gamma} x>\downarrow \min \\
\sum_{i=1}^{n} x_{i}=1 \\
x_{i} \geq 0, i=\overline{1, n}
\end{array}\right.
$$

Here A_{γ} - regularized adjacency matrix of the complement graph $\bar{G}: A_{\gamma}=A_{\bar{G}}+\gamma I_{n}, \quad I_{n}$ - identity matrix , $0<\gamma<1$.

Theorem 1. C is a maximum clique if and only if the point $z_{i}=\frac{1}{K}, i \in C, z_{i}=0, i \notin C$, $K=|C|$ is a solution of $\left(P_{\gamma}\right)$.

Consequence. If $z \in \operatorname{Sol}\left(P_{\gamma}\right)$, then $C=\left\{i: z_{i}>0\right\}$ - maximum clique dimension K, where K - the number of positive components of z.

For approximate solving of this problem we suggest a method, consisting of a local search procedure and evaluation of the found point. To find a local minimum point proposed a local search algorithm, which allows to search a strict local minimum from any feasible point for finite steps [2]. Evaluation of the found point based on the following statement.

Theorem 2. $K \leq \frac{\gamma}{f(z)}$, where $f(x)=<x, A_{\gamma} x>, z \in \operatorname{Sol}\left(P_{\gamma}\right)$ with $\gamma>1$.
Algorithm is tested on problems from the library DTMACS.

REFERENCES

1. Bomze I.M., Budinich M., Pardalos P.M. and Pelillo M. em The maximum cligue problem. / Ed. by DuD. - Z., Pardalos P.M. Handbook of Combinatorial Optimization. - Boston: Kluwer Academic Publishers, 1999. - Suppl. Vol. A. - P. 1-74.
2. Strekalovsky A.S., Kuznetsova A.A. Global Optimality Conditions Approach to the Maximum Clique Problem//International Workshop on Global Optimization "GO-99":Abstr.Firenze, 1999. - P.118-121.
