AN APPROXIMATE ALGORITHM FOR SOLVING THE MAXIMUM CLIQUE PROBLEM

A.A. Kuznetsova

School 12 Usolie-Siberian e-mail: antony74g@mail.ru

Suppose a simple undirected graph G(V, E) is given. It is required to find a maximum subset of vertices C, every pair of vertices connected by an edge in G [1]. This problem can be represented as a continuous one:

$$(P_{\gamma}) \quad \begin{cases} < x, A_{\gamma} \ x > \downarrow \min \\ \sum_{i=1}^{n} x_i = 1 \\ x_i \ge 0, i = \overline{1, n} \end{cases}$$

Here A_{γ} - regularized adjacency matrix of the complement graph \overline{G} : $A_{\gamma} = A_{\overline{G}} + \gamma I_n$, I_n - identity matrix, $0 < \gamma < 1$.

Theorem 1. C is a maximum clique if and only if the point $z_i = \frac{1}{K}$, $i \in C$, $z_i = 0$, $i \notin C$, K = |C| is a solution of (P_{γ}) .

Consequence. If $z \in Sol(P_{\gamma})$, then $C = \{i : z_i > 0\}$ - maximum clique dimension K, where K - the number of positive components of z.

For approximate solving of this problem we suggest a method, consisting of a local search procedure and evaluation of the found point. To find a local minimum point proposed a local search algorithm, which allows to search a strict local minimum from any feasible point for finite steps [2]. Evaluation of the found point based on the following statement.

Theorem 2. $K \leq \frac{\gamma}{f(z)}$, where $f(x) = \langle x, A_{\gamma} | x \rangle, z \in Sol(P_{\gamma})$ with $\gamma > 1$. Algorithm is tested on problems from the library DTMACS.

REFERENCES

1. Bomze I.M., Budinich M., Pardalos P.M. and Pelillo M. em The maximum cligue problem. / Ed. by DuD. - Z., Pardalos P.M. Handbook of Combinatorial Optimization. — Boston: Kluwer Academic Publishers, 1999. — Suppl. Vol. A. - P. 1 - 74.

2. Strekalovsky A.S., Kuznetsova A.A. Global Optimality Conditions Approach to the Maximum Clique Problem//International Workshop on Global Optimization "GO-99":Abstr.-Firenze, 1999. - P.118-121.