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Here we consider a set of popular NP-hard optimization problems, such as Max-Cut, Max-
k-Cut, Correlation clustering and other (ref. [1,3]). Semidefinite programming relaxation is a
popular and widely used tool to produce an effective approximation. In some cases SDP based
methods gives the best possible approximation ratio (under extra hypothesis, e.g. Unique Games
Conjecture [5]).

One prowed here, that using of parametrical methods [2] could strengthen classical results(in
non-asymptotic case). Here we provide some theoretical guarantees, compare our method with
the known ones [3,6,7,8] and give results of numerical experiments for a certain problems of
Boolean circuit design.
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