LOCAL SEARCH PROCEDURES FOR POLYMATRIX GAMES OF THREE PLAYERS¹

A.V. Orlov, S. Batbileg

Institute for System Dynamics & Control Theory SB RAS, Irkutsk e-mail: anor@icc.ru National University of Mongolia, Ulaanbaatar e-mail: batbileg.sukhee@gmail.com

The problem of numerical finding of a Nash equilibrium in a 3-player polymatrix game is considered, where the payoff function of each player is the sum of two bilinear terms [1]. Such a game can be completely described by six matrices, therefore, we will call it a hexamatrix game. As well known, various economical conflicts on the oligopolistic market with three players can be modeled by means of a hexamatrix game.

In order to find a Nash equilibrium point in a hexamatrix game $\Gamma = \Gamma(A_1, A_2, B_1, B_2, C_1, C_2)$ an optimization approach is used. The approach is based on the equivalence theorem for the game and a special mathematical optimization problem with a bilinear structure in the goal function ($\sigma := (x, y, z, \alpha, \beta, \gamma)$) [1]:

$$\Phi(\sigma) \stackrel{\triangle}{=} \langle x, A_1 y + A_2 z \rangle + \langle y, B_1 x + B_2 z \rangle + \langle z, C_1 x + C_2 y \rangle - \alpha - \beta - \gamma \uparrow \max_{\sigma}, \sigma \in D \stackrel{\triangle}{=} \{ (x, y, z, \alpha, \beta, \gamma) \in \mathbb{R}^{m+n+l+3} \mid x \in S_m, y \in S_n, z \in S_l, A_1 y + A_2 z \le \alpha e_m, B_1 x + B_2 z \le \beta e_n, C_1 x + C_2 y \le \gamma e_l \},$$

$$(\mathcal{P})$$

where $S_p = \{u = (u_1, \ldots, u_p)^T \in \mathbb{R}^p \mid u_i \ge 0, \sum_{i=1}^p u_i = 1\}, e_p = (1, 1, \ldots, 1) \in \mathbb{R}^p, p = m, n, l.$ Components (x^*, y^*, z^*) of a global solution to problem (\mathcal{P}) are Nash equilibrium point, and $(\alpha_*, \beta_*, \gamma_*)$ are payoffs of players 1, 2, and 3, respectively, of the game Γ [1].

We propose to solve problem (\mathcal{P}) by means of the Global Search Theory in nonconvex problems with (d.c.) functions of A.D. Alexandrov [2]. According to the Theory one of the basic element of a global search is a local search, which takes into account the structure of the problem under scrutiny.

To implement a local search in problem (\mathcal{P}) , let us apply the idea, first, of splitting variables in several groups, and, after that, of consecutive solving of partial LP problems with respect to groups of variables [2]. This idea has previously demonstrated its efficiency in problems with a bilinear structure. By means of various splitting ways of variables, 12 variants of local search procedures for problem (\mathcal{P}) were developed. The convergence of these procedures is investigated, practical stopping criteria are proposed, and computational testing of the local search in random generated hexamatrix games is implemented.

REFERENCES

1. A.S. Strekalovsky, R. Enkhbat Polymatrix games and optimization problems. — Autom. Remote Control. — 2014, N^Q4 (accepted).

2. A.S. Strekalovsky, A.V. Orlov *Bimatrix Games and Bilinear Programming*. FizMatLit, Moscow, 2007, 224 p. (in Russian).

 $^{^1{\}rm This}$ work is carried out under partly financial support of Russian Foundation for Basic Research (project no. 13-01-92201-Mong_a