A few algorithms for some quadratic Euclidean problems of choosing vector subset and subsequence ${ }^{1}$

Semyon Romanchenko

Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk, e-mail: rsm@math.nsc.ru

We consider following strongly NP-hard [1]
Problem. Given a sequence $\mathcal{Y}=\left(y_{1}, \ldots, y_{N}\right)$ of vectors from \mathbb{R}^{q}, and positive integer numbers $M>1, T_{\min }$ and $T_{\max }$. Find a subset $\mathcal{M}=\left\{n_{1}, \ldots, n_{M}\right\} \subseteq\{1, \ldots, N\}$ such that

$$
\sum_{n \in \mathcal{M}}\left\|y_{n}-\bar{y}(\mathcal{M})\right\|^{2} \rightarrow \min
$$

where $\bar{y}(\mathcal{M})=\frac{1}{|\mathcal{M}|} \sum_{i \in \mathcal{M}} y_{i}$, under constraints

$$
1 \leq T_{\min } \leq n_{m}-n_{m-1} \leq T_{\max } \leq N, m=2, \ldots, M
$$

on the elements of \mathcal{M}.
In the case of $T_{\min }=1$ and $T_{\max }=N$ the formulated problem is equivalent to one strongly NP-hard problem [2] of choosing «compact» subset in \mathcal{Y}.

In this work we present several algorithms for considered problems.
For the problem of choosing a vector subset we have proposed:

- 2-approximation algorithm having a $\mathcal{O}\left(q N^{2}\right)$-time complexity;
- an exact pseudo-polynomial algorithm with $\mathcal{O}\left(q N(2 M B)^{q}\right)$-time complexity for the case when the dimension q of space is fixed and the vectors have integer components, here B is maximal absolute value of input vectors components;
- fully polynomial time approximation scheme (FPTAS) for the case when the dimension q of space is fixed; the presented algorithm builds a $(1+\varepsilon)$-approximate solution in $\mathcal{O}\left(N^{2}(M / \varepsilon)^{q}\right)$ time.

For the problem of choosing a vector subsequence we have proposed:

- 2-approximation algorithm with $\mathcal{O}\left(N^{2}\left(q+N^{2}\right)\right)$-time complexity;
- an exact pseudo-polynomial algorithm with $\mathcal{O}\left(N\left(q+N^{2}\right)(2 M B)^{q}\right)$-time complexity for the case when the dimension q of space is fixed and the vectors have integer components.

REFERENCES

1. A.V. Kel'manov, A.V. Pyatkin. On Complexity of Some Problems of Choosing a Vector Sequences. - J. Comp. Math. Math. Physics - 2012 Vol. 52 №12, p. 2284-2291. (in Russian) 2. A.V. Kel'manov, A.V. Pyatkin. NP-Completeness of Some Problems of Choosing a Vector Subset. - J. Appl. Indust. Math - 2011, Vol. 5, №3, p. 352-357.
[^0]
[^0]: ${ }^{1}$ The authors were supported by the Russian Foundation for Basic Research (projects no. 12-01-00090, no. 13-07-00070)

