POLYHEDRAL PROPERTIES OF THE PROBLEM OF INTERRUPTORIENTED SERVICES OF JOBS BY SINGLE MACHINE

N.Yu. Shereshik

Omsk branch office of Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, Omsk
e-mail: m-m_pikm@mail.ru
A problem of services of various jobs by single machine is contemplated here [1]. There is a set of jobs defined $V=\{1,2, \ldots, n\}$. Each job $i \in V$ has positive weight ω_{i}, processing time p_{i} and release date r_{i}, during which it is unavailable for services. Processing time for various jobs are equal to each other $p_{i}=p$. In the process of work of machine interruptions are assumed. It is necessary to minimize total weighted completion time of serving all the jobs. Suppose $D=\{1, \ldots, d\}$ is instant of time set, sufficient for serving all the jobs.

Here we contemplate the model of integer linear programming of the problem herein [2]. It is required to minimize the function $g(x, y)=\sum_{i \in V} \omega_{i}+\sum_{i \in V} \omega_{i}\left(\sum_{k=1}^{d-1} y_{i k}\right)$ under condition that

$$
\begin{gather*}
\sum_{i \in V} x_{i k} \leq 1, k=1, \ldots, d ; \quad \sum_{k=1}^{d} x_{i k}=p, i \in V \tag{1}\\
\frac{1}{p} \sum_{l=k+1}^{d} x_{i l} \leq y_{i k} \leq \sum_{l=k+1}^{d} x_{i l}, i \in V, k=1, \ldots, d-1 ; \tag{2}\\
x_{i k} \geq 0, i=1, \ldots, n, k=1, \ldots, d \tag{3}\\
x_{i k}=0, i=1, \ldots, n, k=1, \ldots, r_{i} \tag{4}\\
y_{i k} \leq 1, i \in V, k=1, \ldots, d \tag{5}
\end{gather*}
$$

where variables are set as the following
$x_{i k}= \begin{cases}1, & \text { if } i \in V \text { in the instant of time } k \in D, \\ 0, & \text { otherwise; }\end{cases}$
$y_{i k}= \begin{cases}1, & \text { if by the instant of time } k-1 \text { the job } i \text { is not completely served yet, } \\ 0, & \text { otherwise. }\end{cases}$
In the work the properties of polyhedron (1) - (5) for small p are contemplated.

REFERENCES

1. Peter Brucker, Sigrid Knust, "Complexity Results for Scheduling Problems" URL: www//mathematik.uni-osnabrueck.de/research/OR/class.
2. R. Yu. Simanchev, N. Yu. Shereshik. Dichotomy scheme for smallest schedule time search for the problem of services of various jobs by one second source device // Herald of OmSU, \#2. Omsk - 2013. pp. 48-50.
