THE POLYTOPE OF THE GRAPH APPROXIMATION PROBLEM

R.Y. Simanchev, I.V. Urazova

OSC KNIORP SB RAS, Omsk state university, Omsk
e-mail: osiman@rambler.ru, urazovainn@mail.ru
In this paper we consider the following problem. Let $K_{n}=(V, E)$ is a complete graph on n vertices without loops and multiple edges, G - subgraph of K_{n}. Denote by $\mathcal{M}(V)$ the family of all subgraphs of K_{n}, which connected components are cliques. The graph approximation problem is to find a graph $M=\mathcal{M}(V)$ that minimizes the functional $\rho(G, M)=|E G \cup E M|-|E G \cap E M|$.

This problem is $N P$-hard In the general case [1]. For this problem, some known polynomially solvable cases [2], constructed estimates of the objective function [3], developed approximate algorithms [4].

We consider the polyhedral structure of the graph approximation problem. The vector incidence of subgraph $H \subset K_{n}$ is a vector $x^{H} \in R^{E}$, where R^{E} - space associated with the set E, with coordinates $x_{e}^{H}=1$ if $e \in E H$ and $x_{e}^{H}=0$ if $e \notin E H$. Correspondingly, the polytope of this problem is a set $P=\operatorname{conv}\left\{x^{M} \in R^{E} \mid M \in \mathcal{M}(V)\right\}$.

Theorem 1. Polytope P is the convex hull of integer solutions of the system

$$
\begin{gather*}
x_{u v}+x_{u \omega}-x_{v \omega} \leq 1 \\
x_{u v}-x_{u \omega}+x_{v \omega} \leq 1 \tag{1}\\
-x_{u v}+x_{u \omega}+x_{v \omega} \leq 1, \\
x_{u v} \geq 0,
\end{gather*}
$$

where $u, v, \omega \in V$ are possible triples of distinct vertices.
In these terms, the objective function $\rho(G, M)$ for a given G will have the form

$$
f(x)=|E G|+\sum_{e \in E \bar{G}} x_{e}-\sum_{e \in E G} x_{e} .
$$

Theorem 2. Each constraint of the system (1) defines a facet of the polytope P.
In addition, the new classes of facet inequalities of P are describes in this paper. For some classes are solving the separation problem.

REFERENCES

1. Shamir R., Sharan R., Tsur D. Cluster graph modification problems// Discrete Applied Mathematics. - 2004. V. 144, N 1-2. P. 173-182.
2. Friedman G.S. em One of a graph approximation problem // Upravlyaemye Systemy. 1971. Issue 8, p. 73-75. (Russian)
3. Il'ev V.P., Friedman G.S. em On the graphs approximation problem with a fixed number of components // Dokl. USSR Academy of Sciences. - 1982. T. 264, N 3, p. 533-538.
4. Iliev V.P., Ilieva S.D., Navrotskaya A.A. em Approximation algorithms for graph approximation problems // Discrete. Analysis and Operations Research. - 2011. T. 18, N 1, p. 41-60. (Russian).
