A cutting method with updating approximating sets and its combination with other algorithms

I.Ya. Zabotin, R.S. Yarullin

Kazan (Volga region) federal university, Kazan
e-mail: IYaZabotin@mail.ru, YarullinRS@gmail.com
We propose a conditional minimization method which belongs to the class of cutting methods with approximation of the epigraph of the objective function (e. g., [1]). One of its principal features consists in periodically dropping of cutting planes, where there are some advantages from the practical viewpoint.

We solve a minimization problem of a convex function $f(x)$ on a closed convex set $D \subset R_{n}$. The proposed method for solving the problem consists in the following. Choose a point $v^{j} \in \operatorname{int} E$ for each $j \in J=\{1, \ldots, m\}$, where $E=\left\{(x, \gamma) \in R_{n+1}: x \in R_{n}, \gamma \geq f(x)\right\}$, construct a closed convex set $M_{0} \subset R_{n+1}$ which contains E, put numbers $\varepsilon_{k}>0, k \in K=\{0,1, \ldots\}, \varepsilon_{k} \rightarrow 0$, $k \rightarrow \infty, \bar{\gamma} \leq f^{*}=\min \{f(x): x \in D\}$, set $i=0, k=0$.

1. Find a decision $\left(y_{i}, \gamma_{i}\right)$ of the problem

$$
\min \left\{\gamma:(x, \gamma) \in M_{i}, x \in D, \gamma \geq \bar{\gamma}\right\}
$$

where $y_{i} \in R_{n}, \gamma_{i} \in R_{1}$
2. If $f\left(y_{i}\right)-\gamma_{i}>\varepsilon_{k}$, then put $Q_{i}=M_{i}, u_{i}=y_{i}$. Otherwise choose a closed convex set $Q_{i} \subset R_{n+1}$ which contains E and a point $x_{k} \in D$ such that $f\left(x_{k}\right) \leq f\left(y_{i}\right)$, put $\sigma_{k}=\gamma_{i}$, increase the value of k by one.
3. For each $j \in J$ choose a point $z_{i}^{j} \notin \operatorname{int} E$ in an interval $\left(v^{j},\left(u_{i}, \gamma_{i}\right)\right)$ according to some rule and construct a finite set A_{i}^{j} of normalized general support vectors for the set E in the point z_{i}^{j}.
4. Put $M_{i+1}=Q_{i} \bigcap_{j \in J}\left\{w \in R_{n+1}:\left\langle a, w-z_{i}^{j}\right\rangle \leq 0 \forall a \in A_{i}^{j}\right\}$, increase the value of i by one, and go to Step 1.

We prove an optimality theorem for the point y_{i}. We establish that the method constructs the basic sequence $\left\{x_{k}\right\}, k \in K$, with the sequence of auxiliary points $y_{i}, i \in K$, and we obtain the equality $\lim _{k \in K} f\left(x_{k}\right)=f^{*}$ for the sequence $\left\{x_{k}\right\}, k \in K$.

In case of the strongly convex function $f(x)$ with the parameter μ we obtain $\left\|x_{k}-x^{*}\right\| \leq$ $\sqrt{\varepsilon_{k} / \mu}$, where x^{*} is a solution of the problem.

We discuss construction ways of points ε_{k} and sets M_{0}, Q_{i}, A_{i}^{j}. We show how due to choosing sets Q_{i} which differ from M_{i}, in particular $Q_{i}=R_{n+1}$, the method allows to update approximating sets M_{i+1} by dropping accumulated any number of cutting planes. Note that in case of $x_{k} \neq y_{i_{k}}$ choosing condition of the point x_{k} allows to combine this method with other algorithms saving its convergence, and to use parallel computings for finding x_{k}.

REFERENCES

1. V.P. Bulatov Embedding methods in optimization problems. Novosibirsk: Nauka, 1977, 161 p.
