POST-OPTIMAL ANALYSIS OF A VECTOR BOOLEAN PORTFOLIO OPTIMISATION PROBLEM WITH EXTREME OPTIMISM CRITERIA¹

V.A. Emelichev, E.V. Ustilko

Belarusian state university, Minsk e-mail: emelichev@tut.by

We consider *s*-criterial discrete variant of Markowitz's investment problem [1] with extreme optimism criteria:

$$\max_{x \in X} \max_{i \in N_m} \sum_{j \in N_n} e_{ijk} x_j, \quad k \in N_s = \{1, 2, \dots, s\},$$
(1)

where e_{ijk} be an expected assessment of efficiency (yield) of measure $k \in N_s$ of investment project j in the situation when the market is in state $i; X \subset \mathbf{E}^n = \{0,1\}^n$ be a set of all admissible investment portfolios $x = (x_1, x_2, \ldots, x_n)$, where $x_j = 1$ if the project $j \in N_n$ is implemented, and $x_j = 0$ otherwise. Pareto set of the investment problem (1) is denoted by $P^s(E)$, where $E = [e_{ijk}] \in \mathbf{R}^{m \times n \times s}$. We define arbitrary Hölder norm $l_p, 1 \leq p \leq \infty$, in spaces \mathbf{R}^n and \mathbf{R}^s , and the Chebyshev norm l_∞ in the space \mathbf{R}^m , i.e. by the norm of a matrix $E \in \mathbf{R}^{m \times n \times s}$ is meant $||E||_{p \infty p} = ||(||E_1||_{p \infty}, ||E_2||_{p \infty}, \ldots, ||E_s||_{p \infty})||_p$, where $||E_k||_{p \infty} =$ $||(||e_{1k}||_p, ||e_{2k}||_p, \ldots, ||e_{mk}||_p)||_{\infty}, k \in N_s$. Here $E_k \in \mathbf{R}^{m \times n}$ is k-th cut of matrix $E, e_{ik} =$ $(e_{i1k}, e_{i2k}, \ldots, e_{ink})$ is *i*-th row of that cut. As usual [2], the stability radius $\rho(m, n, s, p)$ of the problem (1) is defined as $\sup \Xi(p)$ if $\Xi(p) \neq \emptyset$. Otherwise we consider $\rho(m, n, s, p) = 0$. Here $\Xi(p) = \{\varepsilon > 0 : \forall E' \in \Omega(p) \quad (P^s(E + E') \subseteq P^s(E))\}, \Omega(p) = \{E' \in \mathbf{R}^{m \times n \times s} : ||E'||_{p \infty p} < \varepsilon\}.$

Theorem. For $P^{s}(E) \neq X$, any $m, n, s \in \mathbb{N}$ and $p \in [1, \infty]$ for the stability radius the following bounds are true

$$\varphi \le \rho(m, n, s, p) \le (ns)^{1/p} \psi,$$

where

$$\varphi = \min_{x \notin P^s(E)} \max_{x' \in X(x,E)} \min_{k \in N_s} \frac{f_k(x') - f_k(x)}{\|x'\|_q + \|x\|_q}, \quad \psi = \min_{x \notin P^s(E)} \max_{x' \in X(x,E)} \min_{k \in N_s} \frac{f_k(x') - f_k(x)}{\|x' - x\|_1},$$
$$X(x, E) = \{x' \in P^s(E) : f(x') \ge f(x) \quad \& \quad f(x') \ne f(x)\}, \quad f(x) = (f_1(x), \dots, f_s(x));$$
$$f_k(x) = \max_{i \in N_m} \sum_{j \in N_n} e_{ijk} x_j, \quad k \in N_s; \quad 1/p + 1/q = 1.$$

REFERENCES

1. H.M. Markowitz Portfolio selection: efficient diversification of investments. New Yourk: Willey, 1991, 400 p.

2. V.A. Emelichev, V.V. Korotkov On stability of a vector Boolean investment problem with Wald's criteria. — Discrete Math. Appl. — 2012, v.22, No.4, p. 367-381.

 $^{^{1}}$ This work was partially supported by the Belarusian Republican Foundation for Fundamental Research (the project F13K-078).