POST-OPTIMAL ANALYSIS OF A VECTOR BOOLEAN PORTFOLIO OPTIMISATION PROBLEM WITH EXTREME OPTIMISM CRITERIA ${ }^{1}$

V.A. Emelichev, E.V. Ustilko

Belarusian state university, Minsk
e-mail: emelichev@tut.by

We consider s-criterial discrete variant of Markowitz's investment problem [1] with extreme optimism criteria:

$$
\begin{equation*}
\max _{x \in X} \max _{i \in N_{m}} \sum_{j \in N_{n}} e_{i j k} x_{j}, \quad k \in N_{s}=\{1,2, \ldots, s\}, \tag{1}
\end{equation*}
$$

where $e_{i j k}$ be an expected assessment of efficiency (yield) of measure $k \in N_{s}$ of investment project j in the situation when the market is in state i; $X \subset \mathbf{E}^{n}=\{0,1\}^{n}$ be a set of all admissible investment portfolios $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where $x_{j}=1$ if the project $j \in N_{n}$ is implemented, and $x_{j}=0$ otherwise. Pareto set of the investment problem (1) is denoted by $P^{s}(E)$, where $E=\left[e_{i j k}\right] \in \mathbf{R}^{m \times n \times s}$. We define arbitrary Hölder norm $l_{p}, 1 \leq p \leq \infty$, in spaces \mathbf{R}^{n} and \mathbf{R}^{s}, and the Chebyshev norm l_{∞} in the space \mathbf{R}^{m}, i.e. by the norm of a matrix $E \in \mathbf{R}^{m \times n \times s}$ is meant $\|E\|_{p \infty p}=\left\|\left(\left\|E_{1}\right\|_{p \infty},\left\|E_{2}\right\|_{p \infty}, \ldots,\left\|E_{s}\right\|_{p \infty}\right)\right\|_{p}$, where $\left\|E_{k}\right\|_{p \infty}=$ $\left\|\left(\left\|e_{1 k}\right\|_{p},\left\|e_{2 k}\right\|_{p}, \ldots,\left\|e_{m k}\right\|_{p}\right)\right\|_{\infty}, k \in N_{s}$. Here $E_{k} \in \mathbf{R}^{m \times n}$ is k-th cut of matrix E, $e_{i k}=$ $\left(e_{i 1 k}, e_{i 2 k}, \ldots, e_{i n k}\right)$ is i-th row of that cut. As usual [2], the stability radius $\rho(m, n, s, p)$ of the problem (1) is defined as $\sup \Xi(p)$ if $\Xi(p) \neq \emptyset$. Otherwise we consider $\rho(m, n, s, p)=0$. Here $\Xi(p)=\left\{\varepsilon>0: \forall E^{\prime} \in \Omega(p) \quad\left(P^{s}\left(E+E^{\prime}\right) \subseteq P^{s}(E)\right)\right\}, \Omega(p)=\left\{E^{\prime} \in \mathbf{R}^{m \times n \times s}:\left\|E^{\prime}\right\|_{p \infty p}<\varepsilon\right\}$.

Theorem. For $P^{s}(E) \neq X$, any $m, n, s \in \mathbf{N}$ and $p \in[1, \infty]$ for the stability radius the following bounds are true

$$
\varphi \leq \rho(m, n, s, p) \leq(n s)^{1 / p} \psi,
$$

where

$$
\begin{gathered}
\varphi=\min _{x \notin P^{s}(E)} \max _{x^{\prime} \in X(x, E)} \min _{k \in N_{s}} \frac{f_{k}\left(x^{\prime}\right)-f_{k}(x)}{\left\|x^{\prime}\right\|_{q}+\|x\|_{q}}, \quad \psi=\min _{x \notin P^{s}(E)} \max _{x^{\prime} \in X(x, E)} \min _{k \in N_{s}} \frac{f_{k}\left(x^{\prime}\right)-f_{k}(x)}{\left\|x^{\prime}-x\right\|_{1}}, \\
X(x, E)=\left\{x^{\prime} \in P^{s}(E): f\left(x^{\prime}\right) \geq f(x) \quad \& \quad f\left(x^{\prime}\right) \neq f(x)\right\}, \quad f(x)=\left(f_{1}(x), \ldots, f_{s}(x)\right) ; \\
f_{k}(x)=\max _{i \in N_{m}} \sum_{j \in N_{n}} e_{i j k} x_{j}, k \in N_{s} ; \quad 1 / p+1 / q=1 .
\end{gathered}
$$

REFERENCES

1. H.M. Markowitz Portfolio selection: efficient diversification of investments. New Yourk: Willey, 1991, 400 p.
2. V.A. Emelichev, V.V. Korotkov On stability of a vector Boolean investment problem with Wald's criteria. - Discrete Math. Appl. - 2012, v.22, No.4, p. 367-381.
[^0]
[^0]: ${ }^{1}$ This work was partially supported by the Belarusian Republican Foundation for Fundamental Research (the project F13K-078).

