APPROXIMATION ALGORITHMS FOR NP-HARD POLYHEDRAL SEPARABILITY PROBLEMS ${ }^{1}$

K.S. Kobylkin

Krasovsky Institute of Mathematics and Mechanics, Ural Branch of RAS, Ekaterinburg e-mail: kobylkinks@gmail.com

We consider monochromatic ball covering problem as a preliminary step to solve NP-hard polyhedral separability problem.

Problem 1. Given set of points $X=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{l}$ where $x_{i} \in \mathbb{R}^{d}$ and $y_{i} \in\{-1,1\}$ find the smallest cardinality disjunct cover \mathcal{D} of balls for X such that for every $D \in \mathcal{D}$ we have $y=1$ for all $z=(x, y) \in X \cap D$ or $y=-1$ for each $z \in X \cap D$.

In problem 1 notations let us formulate problem 2 of polyhedral separability [2] of two subsets A and B of X having y-coordinates $y=1$ and $y=-1$ respectively. Specifically the problem is to get the smallest cardinality set of hyperplanes such that for each pair of points $a \in A$ and $b \in B$ there is some hyperplane in the set which strictly separates a and b.

It turns out that every feasible solution \mathcal{D} of cardinality N for problem 1 can be easily transformed into the feasible solution for problem 2. For $d=2$ a power diagram (which is more general than Voronoi diagram) for disks of \mathcal{D} could be obtained in time $O(N \log N)$ from which a feasible solution for problem 2 of cardinality $O(N)$ should be easily extracted in time $O(N)$. For $d>2$ analogous transform would be done in time $O\left(N^{2}\right)$ with feasible solution of cardinality $O\left(N^{2}\right)$ to the second problem. This transform has the following statistical analogue: given clustered data find a soft power diagram having the largest margin [1].

To estimate the accuracy of the solution for problem 2 thus obtained let us denote by $k_{\text {opt }}$ the minimal value for the problem. Also by $N_{\text {opt }}$ we mean the smallest cardinality of the partition of X into "monochromatic" blocks (subsets whose points have equal y-coordinates) having convex hulls which contain no points of X with different y-coordinate. Then for $d=2$ the accuracy of the solution of problem 2 could be expressed in terms of the accuracy for corresponding problem 1 as $O\left(k_{\text {opt }} \Delta\right)$ where $\Delta=N / N_{\text {opt }}$. In view of the tight bound $k_{o p t} \geq \Theta\left(\sqrt[d]{N_{o p t}}\right)$ the accuracy would be looser for $d>2$.

To get an approximate solution for problem 1 we use $O\left(|X|^{\left\lceil\frac{d}{2}\right\rceil}\left(\varepsilon^{-2} \log |X|\right)^{\lceil(d+1) / 2\rceil}\right)$ procedure for approximate (to accuracy $\varepsilon>0$) ball search which contains the largest cardinality subset of A (resp. of B) while avoiding points from B (resp. from A) [3].

REFERENCES

1. S. Borgwardt On soft power diagrams. - arXiv:1307.3949[cs.LG]. - 2013, 22p.
2. N. Megiddo On the Complexity of Polyhedral Separability. - Discrete and Computational Geometry. - 1988, №3, P. 325-337.
3. Aronov B., Har-Peled S. On approximating the depth and related problems. - SIAM Journal of Computing. - 2008, Vol. 38. P. 899-921.
[^0]
[^0]: ${ }^{1}$ Work was financially supported by Ural Branch of RAS (projects № 12-P-1-1016, 12-S-1-1017/1), RFBR (projects № 13-07-00181, 13-01-00210).

