The development options of nuclear power under carbon dioxide emissions constraints

Статья в журнале
Marchenko O.V. , Solomin S.V.
Nuclear Energy and Technology
2023
The aim of the work is forecasting the development of nuclear power in Russia and the world for the period up to 2050 under various scenarios of constraints on carbon dioxide emissions. A brief comparative analysis of the main characteristics of the forecasts of the International Energy Agency (IEA) and the International Renewable Energy Agency (IRENA) has been carried out. Additionally, calculations were performed using the mathematical models of the world energy system GEM and GEM-Dyn developed at the ISEM SB RAS. The optimal ratio of nuclear and non-nuclear energy sources has been determined. It is shown that nuclear power, including nuclear power plants operating on a closed fuel cycle, along with renewable energy sources, is an effective technology that can solve the problem of reducing carbon dioxide emissions. Calculations have shown that in the sustainable development scenario, the capacity of nuclear power plants in Russia in the period from 2020 to 2050 can increase by 2.7 times, and their share in electricity generation can reach 21–25% in 2030 and 26–35% in 2050. The average annual growth rate (for 30 years) of the installed capacity of nuclear power plants in Russia in the sustainable development scenario is 3.1% compared to 2.7% for the world as a whole. In the GEM and GEM-Dyn calculations performed by the authors, the scale of nuclear energy use turned out to be about 30% higher than in the scenarios of the International Energy Agency due to more conservative estimates of the opportunities for improving the performance of renewable energy sources and taking into account the need to back-up their capacity. © Marchenko OV & Solomin SV.

Библиографическая ссылка

Marchenko O.V. , Solomin S.V.  The development options of nuclear power under carbon dioxide emissions constraints // Nuclear Energy and Technology. Vol.9. №1. 2023. P.27-31. DOI: 10.3897/nucet.9.100754
SCOPUS
x
x